Niche-based and angle-based selection strategies for many-objective evolutionary optimization
نویسندگان
چکیده
It is well known that balancing population diversity and convergence plays a crucial role in evolutionary many-objective optimization. However, most existing multiobjective algorithms encounter difficulties solving optimization problems. Thus, this paper suggests niche-based angle-based selection strategies for In the proposed algorithm, two are included: density estimation strategy strategy. Both employed environmental to eliminate worst individual from an iterative way. To be specific, former estimates of each finds crowded area population. The latter removes individuals with weak same niche. Experimental studies on several well-known benchmark problems show algorithm competitive compared six state-of-the-art algorithms. Moreover, has also been verified scalable deal constrained
منابع مشابه
A Many-Objective Evolutionary Algorithm with Angle-Based Selection and Shift-Based Density Estimation
Evolutionary many-objective optimization has been gaining increasing attention from the evolutionary computation research community. Much effort has been devoted to addressing this issue by improving the scalability of multiobjective evolutionary algorithms, such as Pareto-based, decomposition-based, and indicator-based approaches. Different from current work, we propose a novel algorithm in th...
متن کاملIGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems
Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiand manyobjective evolutionary algorithms. In this paper, an IGD indicatorbased evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each gen...
متن کاملEvolutionary Many-Objective Optimization Based on Kuhn-Munkres' Algorithm
In this paper, we propose a new multi-objective evolutionary algorithm (MOEA), which transforms a multi-objective optimization problem into a linear assignment problem using a set of weight vectors uniformly scattered. Our approach adopts uniform design to obtain the set of weights and Kuhn-Munkres’ (Hungarian) algorithm to solve the assignment problem. Differential evolution is used as our sea...
متن کاملEvolutionary Many-Objective Optimization Based on Adversarial Decomposition
The decomposition-based method has been recognized as a major approach for multiobjective optimization. It decomposes a multi-objective optimization problem into several singleobjective optimization subproblems, each of which is usually defined as a scalarizing function using a weight vector. Due to the characteristics of the contour line of a particular scalarizing function, the performance of...
متن کاملMany objective optimization and hypervolume based search
Multiobjective optimization problems occur frequently in practice where multiple objectives have to be optimized simultaneously and the goal is to find or approximate the set of Pareto-optimal solutions. Multiobjective evolutionary algorithms (MOEAs) are one type of randomized search heuristics that are well-suited for multiobjective optimization problems due to their ability of computing a set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2021
ISSN: ['0020-0255', '1872-6291']
DOI: https://doi.org/10.1016/j.ins.2021.04.050